Терагерцевая антенна с сапфировой линзой

Сапфировые микролинзы почти в девять раз повысили мощность антенны терагерцевого излучения большой площади. Технология может использоваться в медицине для обнаружения опухолей и других патологий живых тканей, в системах сканирования багажа, а также в археологии для исследования артефактов
Терагерцевая антенна с сапфировой линзой
Схема фотопроводящей антенны большой площади с сапфировыми волокнами на ее поверхности
N. V. Zenchenko et al. / Applied Physics Letters, 2024

Физики сконструировали фотопроводящую антенну большой площади — прибор, преобразующий свет лазера в терагерцевое (ТГц) излучение, — эффективность которой в 8,5 раза выше, чем у аналогов. Авторы добились этого благодаря сапфировым микролинзам, которые направляли лазерные лучи четко на рабочий материал устройства.

magnifier.png Авторы вырастили кристаллы сапфира в виде тонких волокон, после чего нанесли их на поверхность полупроводника — рабочего материала антенны, преобразующего свет в ТГц-излучение

Терагерцевое излучение — электромагнитные волны длиной от десятков микрометров до миллиметра — считается перспективным инструментом для «просвечивания» самых разных объектов. С его помощью можно исследовать строение живых тканей, выявляя различные патологии, например раковые опухоли; просвечивать багаж в пунктах досмотра, а также сканировать археологические находки. Важное преимущество ТГц-излучения в том, что оно абсолютно безопасно для человека — в отличие от рентгеновского, которое в высоких дозах может приводить к повреждению тканей и мутациям в ДНК. Поэтому последние 30 лет ученые развивают источники ТГц-излучения. Одни из самых перспективных — фотопроводящие антенны, устройства, которые преобразуют лазерное излучение в волны ТГц-диапазона. Такие антенны работают при комнатной температуре и позволяют генерировать электромагнитные волны в широком диапазоне частот. Однако эффективность преобразования света лазера в ТГц-излучение до сих пор недостаточно высока, поскольку сложно локализовать большое количество носителей заряда в области электродов антенны. Из-за этого мощность существующих фотопроводящих антенн ограничена, и ученые пытаются улучшить их характеристики.

Ранее исследователи из Института сверхвысокочастотной полупроводниковой электроники имени (ИСВЧПЭ) им. В. Г. Мокерова РАН и Московского государственного технического университета им. Н. Э. Баумана с коллегами теоретически описали подход, позволяющий повысить эффективность фотопроводящих антенн, добавив в их конструкцию сапфировые линзы, поскольку этот материал хорошо преломляет свет. Согласно предложенной идее, эти линзы должны фокусировать лазерное излучение таким образом, что оно до 10 раз эффективнее улавливается прибором и в результате преобразуется в ТГц-излучение высокой мощности.

В новом исследовании авторы экспериментально проверили этот подход, сконструировав фотопроводящую антенну большой площади (0,1 квадратного миллиметра, это в 100 раз больше аналогов) с сапфировыми линзами. Авторы вырастили кристаллы сапфира в виде тонких волокон, после чего нанесли их на поверхность полупроводника — рабочего материала антенны, преобразующего свет в ТГц-излучение.

Затем авторы оценили эффективность полученного устройства, направив на него лазерный луч и измерив, какую мощность ТГц-излучения можно получить. Эксперимент показал, что мощность ТГц-волн, генерируемых новым прибором, в 8,5 раза превосходит показатели аналогичной антенны большой площади без сапфировых линз.

magnifier.png «В дальнейшем мы планируем проверить, можно ли еще увеличить эффективность ТГц-излучателей, если использовать лазеры повышенной мощности, а также оптимизировать топологию самого излучателя»

«Сконструированный нами излучатель большой площади можно легко интегрировать в современные установки для ТГц-визуализации, используемые, например, для сканирования живых тканей и различных материалов, а предложенный подход — использование сапфирового волокна в качестве эффективной микролинзы — позволит расширить применение ТГц-детекторов в медицинских устройствах, экологическом мониторинге и системах безопасности. В дальнейшем мы планируем проверить, можно ли еще увеличить эффективность ТГц-излучателей, если использовать лазеры повышенной мощности, а также оптимизировать топологию самого излучателя», — рассказывает руководитель проекта Дмитрий Пономарев, заместитель директора по научной работе ИСВЧПЭ РАН и старший научный сотрудник лаборатории квантово-каскадных лазеров МФТИ.

В исследовании принимали участие сотрудники ИСВЧПЭ РАН, Института общей физики им. А. М. Прохорова РАН, Института физики твердого тела РАН, Московского государственного технического университета им. Н. Э. Баумана (Москва), Московского физико-технического института и Университета Тохоку (Япония).

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Applied Physics Letters.

По материалам пресс-службы РНФ

Еще по теме:
25.04.2024
Новая математическая функция поможет на 20% точнее классифицировать биомедицинские сигналы и диагностировать заболев...
19.04.2024
Почвоведы из РУДН научились оценивать загрязнение почвы тяжелыми металлами в 16 раз быстрее и в пять раз дешевле, чем тр...
12.04.2024
Научная группа из Объединенного института высоких температур РАН создала стабильную ультрахолодную плазму, которая может...
10.04.2024
Сегодня, 10 апреля 2024 года, Музей космонавтики и ракетной техники им. В. П. Глушко пополнился новым экспонатом — спуск...
Наверх