Наука и технологии 19 августа 2022

Припой для стенки токамака

Ученые из Национального ядерного исследовательского университета МИФИ предложили новый способ соединения обращенных к плазме материалов стенки демонстрационного термоядерного реактора
Припой для стенки токамака
ДЕМО — демонстрационные термоядерные энергетические установки
atomic-energy.ru

Демонстрационный термоядерный реактор (ДЕМО) станет следующим этапом в подготовке к использованию термоядерной энергии в промышленных масштабах. Первый этап — строящийся сейчас близ Марселя (Франция) международный термоядерный экспериментальный реактор ИТЭР (International Thermonuclear Experimental Reactor), он должен продемонстрировать научно-техническую возможность использования термоядерной энергии в мирных целях. Если это удастся, человечество получит практически неисчерпаемый источник энергии. Реакторы следующего поколения ДЕМО некоторые страны-участницы, в том числе Россия, построят уже на своей территории — в них должна будет происходить реакция еще большей мощности и в практически непрерывном режиме.

Вклад российских ученых в создание ИТЭР и в проектирование реакторов нового поколения ДЕМО является определяющим: инициатива создания первой международной экспериментальной термоядерной установки принадлежала академику Евгению Велихову, в ее основе лежит система токамак (Тороидальная Камера с Магнитными Катушками), также разработанная в 50-е годы ХХ века советскими академиками Игорем Таммом и Андреем Сахаровым. Сегодня к проекту привлечены крупнейшие научные центры России — Курчатовский институт, НИЯУ МИФИ, ВНИИНМ, ТРИНИТИ, НИИЭФА, НИКИЭТ и другие.


СУЧКОВ.jpg
Алексей Сучков, доцент Института ядерной физики и технологий НИЯУ МИФИ
kaf9.mephi.ru

Под нагрузкой выше 2 МВт/м2

В ИТЭР все материалы для строительства реактора уже определены, и первые эксперименты на нем должны начаться уже в 2025 году, ДЕМО же существуют пока только в виде теоретических разработок. Для установок типа ДЕМО надо разрабатывать и внедрять сложные элементы и системы, которых нет ни на каких существующих сегодня экспериментальных термоядерных устройствах.

Одна из главных проблем, которую необходимо будет решить, — выбор материала для наиболее энергетически напряженных, контактирующих с термоядерной плазмой элементов реактора ДЕМО. Если в ИТЭР основа стенок — это хромоциркониевая бронза с напаянными «плитками» из вольфрама или бериллия, то в ДЕМО, где нагрузки на стенки реактора будут гораздо более мощными, понадобится уже жаропрочная сталь — предполагается, что в отечественной установке это будет либо аустенитная, либо феррито-мартенситная сталь ЭК-181 (по западной классификации Rusfer). Однако среди прочих остается серьезная проблема: необходимо создать термостойкое неразъемное соединение стали и вольфрама для элементов первой стенки и дивертора будущего реактора, которые будут находиться под нагрузками выше 2 МВт/м2 и нейтронным облучением.

magnifier.png В ИТЭР все материалы для строительства реактора уже определены, и первые эксперименты на нем должны начаться уже в 2025 году, ДЕМО же существуют пока только в виде теоретических разработок

Для этой цели необходимо было не просто получить новый сплав-припой из малоактивируемых элементов и отработать режимы пайки вольфрама со сталью, но и понять области применения таких паяных соединений в среде изотопов водорода — топлива термоядерных реакторов. Этим занялась группа ученых в НИЯУ МИФИ: совместными усилиями кафедр физических проблем материаловедения и физики плазмы был разработан припой TiZr4Be для пайки вольфрама со сталью ЭК-181 и определены условия применения таких паяных соединений в водородной среде.

«Так как материалы должны быть еще и малоактивированные, то две трети таблицы Менделеева в таких установках применять нельзя. Нужно разрабатывать припой с определенной температурой плавления и подобрать такой режим пайки, который позволял бы соединить очень разные по своим свойствам материалы, в частности по коэффициенту термического расширения, — вольфрам и сталь. Иначе при быстрых изменениях температуры в соединении могут возникнуть трещины, и обращенные к плазме элементы стенки реактора просто-напросто разрушатся», — объясняет Алексей Сучков, доцент Института ядерной физики и технологий НИЯУ МИФИ.


ГАСПАРЯН.jpg
Юрий Гаспарян, доцент Института лазерных и плазменных технологий НИЯУ МИФИ
plasma.mephi.ru

В борьбе с водородным охрупчиванием

Топливо термоядерных реакторов — это смесь изотопов водорода, дейтерия и трития, последние могут накапливаться в материалах стенки. Кроме накопления радиоактивного трития, с точки зрения безопасности существует и проблема водородного охрупчивания материала, а значит, нужны специфические припои, устойчивые в среде водорода. В результате исследований российских ученых было установлено, что припой TiZr4Be с промежуточным слоем из тантала может быть использован для соединения вольфрама с малоактивируемой ферритно-мартенситной сталью.

Удержание дейтерия в соединениях W-ЭК-181 и отдельных элементах исследовалось с упором на промежуточный слой припоя. Образцы подвергались воздействию газообразного дейтерия (p = 1‒104 Па, T = 300‒600 °C) и плазменного разряда (T = 600 °C). Проводился всесторонний анализ состояния образцов после экспозиции, в том числе при использовании синхротронного источника излучения. После плазменного облучения и после газовой выдержки при давлении 1 Па наблюдалась приемлемая концентрация дейтерия, что соответствует условиям эксплуатации будущих термоядерных устройств. Однако при повышенных давлениях захват дейтерия становился слишком большим, что приводило к разрушению припоя и всего паяного соединения.

magnifier.png Если в ИТЭР основа стенок — это хромоциркониевая бронза с напаянными «плитками» из вольфрама или бериллия, то в ДЕМО, где нагрузки на стенки реактора будут гораздо более мощными, понадобится уже жаропрочная сталь

«Мы сделали первый шаг: создали макет элемента первой стенки термоядерного реактора и дивертора и испытали его в режимах, приближенных к ожидаемым в термоядерных установках, — рассказывает Юрий Гаспарян, доцент Института лазерных и плазменных технологий НИЯУ МИФИ. — Соединение устойчиво при определенных условиях: мы выявили его ограничения по температуре и давлению окружающего газа. Следовательно, надо либо продолжить поиски подходящих материалов, либо гарантировать допустимые условия эксплуатации».

Работа была проведена на средства грантов Российского научного фонда и Министерства науки и высшего образования. Результаты опубликованы в высокорейтинговом научном журнале Journal of Nuclear Materials.

По материалам пресс-службы МИФИ

Еще по теме:
12.04.2024
Научная группа из Объединенного института высоких температур РАН создала стабильную ультрахолодную плазму, которая может...
10.04.2024
Сегодня, 10 апреля 2024 года, Музей космонавтики и ракетной техники им. В. П. Глушко пополнился новым экспонатом — спуск...
04.04.2024
Сапфировые микролинзы почти в девять раз повысили мощность антенны терагерцевого излучения большой площади. Технология м...
01.04.2024
Обзорная экспедиция на ледоколе «Илья Муромец» изучила следы похода на Крайний Север, датированного началом XVII века. В...
Наверх