Новости 12.11.2018

Создан прибор, разделяющий ток спинов в жидком свете

Создан прибор, разделяющий ток спинов в жидком свете
Ученые из Сколтеха вместе c иностранными коллегами придумали способ разделения жидкого света на потоки с разными спинами
naked-science.ru

Ученые из Сколтеха вместе c иностранными коллегами придумали способ разделения жидкого света на потоки с разными спинами. Манипулирование током спинов имеет большой потенциал для использования в современных фотонных устройствах. Результаты этих исследований освещены в нескольких ведущих научных журналах группы Nature.

В традиционных электронных устройствах информация кодируется через зарядовые состояния, распространяющиеся по электронным цепям. В спинтронике информация закодирована не в зарядах частиц, а в их спиновых состояниях. У спинтроники есть масса преимуществ по сравнению с классической электроникой, например низкое электропотребление. Но в то же время существуют сложности, препятствующие созданию устройств на их основе, например процессоров.

Cпинтроника может использоваться в фотонных устройствах, которые намного быстрее классических электронных. В фотонных устройствах, в которых свет сильно взаимодействует с веществом, свойства света становятся похожими на свойства жидкости.

Группа гибридной фотоники Сколтеха разрабатывает новые подходы на стыке спинтроники и фотоники. Алексис Аскитопулос, старший научный сотрудник Сколтеха, недавно предложил новый способ разделения потоков в пространстве, обладающих разными спинами. Еще одно важное открытие — возможность контроля спинового тока в так называемом жидком свете (потоке поляритонов) с помощью электрического поля. Для проведения этого исследования Сколтех сотрудничал с Университетом Варшавы и Польским военным технологическим университетом — экспертами по жидким кристаллам. Успешное международное сотрудничество привело к созданию оптоэлектронного устройства, которое позволяет управлять током спинов с помощью приложения электрических полей в оптических микрорезонаторах, заполненных жидкими кристаллами. Результаты этой работы опубликованы в журнале Nature Light: Science & Applications.

Между светом и жидкостью, казалось бы, нет ничего общего, пишет научный руководитель лаборатории оптики спина Санкт-Петербургского государственного университета Алексей Кавокин. Свет — это поток электромагнитных квантов — фотонов. В вакууме они движутся по прямой с одинаковой скоростью и не взаимодействуют друг с другом. Жидкость — это набор атомов или молекул, которые движутся хаотически, с разными скоростями, сталкиваются, взаимодействуют. Отсюда вязкость, образование капель, водоворотов и т. п. Однако в определенных условиях свет ведет себя как жидкость.

«Жидкий» свет может распространяться очень медленно и так же, как, например, вода, формирует капли и водовороты. Жидким светом легко управлять. Его можно переливать из сосуда в сосуд, сообщать ему поступательное или вращательное движение. Что еще важнее, жидкий свет можно использовать для переноса информации. В этом случае вместо электронов в транзисторах и диодах бегает электрически нейтральная свето-жидкость. В определенных условиях такая жидкость становится сверхтекучей: распространяется без трения и вязкости, проходит через мельчайшие щели, обтекает препятствия. Если оставить свето-жидкость в покое, она образует лужи или, как их называют физики, конденсаты. Световые конденсаты предполагается использовать в квантовых симуляторах: приборах, которые с рекордной скоростью будут решать определенный набор задач, вызывающих затруднения у классических компьютеров.

Идея свето-жидкости родилась еще в конце 1960-х годов. Ее авторы —физики Владимир Моисеевич Агранович (СССР) и Джон Джозеф Хопфилд (США).

Практически одновременно им пришла в голову одна красивая мысль. Представим себе фотон, подлетающий к полупроводниковому кристаллу. Вот он залетел в кристалл, распространяется сквозь кристаллическую решетку. Что с ним может случиться? Это известно: фотон исчезнет, поглотится кристаллом. При этом его энергия будет передана кристаллическому возбуждению, квазичастице, которую называют экситон. Экситон очень похож на атом водорода, только больше размером раз в двести. Экситоны — электрически нейтральные материальные частицы. И они могут сталкиваться, как бильярдные шары.

Самое важное в нашей истории то, что, пожив немного, экситон тоже исчезает. И передает свою энергию новому фотону. То есть появляется фотон, свойства которого ничем не отличаются от свойств старого фотона, который когда-то влетел в кристалл. Превращения экситон–фотон, фотон–экситон могут происходить в любой точке кристалла и в любой момент времени. С точки зрения квантовой механики нельзя больше разделить экситон и фотон. Эти два кванта образуют новую гибридную квазичастицу — экситонный поляритон. Открытые Аграновичем и Хопфилдом экситонные поляритоны — это и есть квазичастицы жидкого света. Они обладают полным набором неотъемлемых свойств света: характеризуются фазой, поляризацией, длиной волны, могут летать очень быстро. Но при этом обладают и свойствами обычных материальных частиц: взаимодействуют с кристаллической решеткой, отталкивают друг друга, ускоряются, замедляются, реагируют на внешние поля.

В 1992 году французский ученый Клод Вайсбуш и японец Ясухико Аракава обнаружили частицы жидкого света в плоских полупроводниковых резонаторах, сделанных из арсенида галлия с алюминием. С тех пор начался поляритонный бум. В 1996 году турецкий ученый Атач Имамоглу и японец Йоси Ямамото показали теоретически, что свето-жидкость может образовывать конденсаты Бозе—Эйнштейна (многочастичные когерентные состояния вещества), на основе которых можно делать новые лазеры — поляритонные. Схема действия современного поляритонного лазера следующая: носители электрического заряда — электроны и дырки — впрыскиваются в полупроводниковый микрорезонатор через металлические контакты. Встречаясь, они образуют экситоны. Излучая и перепоглощая свет, экситоны рождают свето-жидкость, которая формирует конденсат. Свет, излучаемый таким конденсатом, — это уже лазерный свет: когерентный, монохроматический, поляризованный.

В России первый поляритонный лазер был исследован в лаборатории Владимира Дмитриевича Кулаковского в Институте физики твердого тела РАН в Черноголовке. Результаты были опубликованы в престижном журнале Nature в 2013 году. Благодаря лаборатории оптики спина (СОЛАБ) в Санкт-Петербургском государственном университете, группе квантовой поляритоники в Российском квантовом центре, а также лаборатории гибридной фотоники Сколтеха Россия сейчас занимает одну из лидирующих позиций в физике жидкого света. Эта молодая область развивается рекордными темпами. Всего несколько лет прошло после обнаружения сверхтекучести поляритонов и поляритонных вихрей, а уже разрабатывается целый класс приборов, использующих эти и другие удивительные свойства жидкого света. К таким приборам можно отнести бозонные каскадные лазеры, излучающие субмиллиметровые волны, сверхчувствительные гироскопы, оптические интегральные схемы, поляритонные квантовые симуляторы.

Поляритоника — это электроника будущего. Замена электрического тока световым в компьютерных процессорах позволила бы сэкономить миллиарды долларов только на уменьшении тепловых потерь при передаче информации.


Наверх