Интервью 1 Марта 2017

Академический, прикладной, эффективный

Научный руководитель Института катализа СО РАН академик Валентин Пармон считает, что настоящее мерило достижений ученого в технических науках — промышленные технологии
Академический, прикладной, эффективный
Валентин Пармон, научный руководитель Института катализа им. Г. К. Борескова Сибирского отделения РАН
Фотография предоставлена пресс-службой премии «Глобальная энергия»

Валентин Пармон — один из самых авторитетных в мире ученых в области катализа и фотокатализа, химических методов преобразования энергии, нетрадиционных и возобновляемых источников энергии, термодинамики неравновесных процессов. Академик более двадцати лет возглавляет (последние два года в качестве научного руководителя) Институт катализа им. Г. К. Борескова Сибирского отделения РАН, крупнейший в мире исследовательский центр, специализирующийся на изучении катализа и создании каталитических технологий. Летом прошлого года о каталитической химии заговорили больше обычного, когда Валентин Пармон стал лауреатом премии «Глобальная энергия». та премия — своеобразный технологический аналог Нобелевки, вручаемый за заслуги, нашедшие практическое воплощение в энергетических технологиях и проектах. Российский академик был номинирован за «прорывную разработку новых катализаторов в области нефтепереработки и возобновляемых источников энергии, внесших принципиальный вклад в развитие энергетики будущего». Достижения, за которые он был удостоен премии, как раз и заключаются в прикладном применении катализа в решении различных энергетических проблем — от нефтепереработки до получения новых видов биотоплива. Мы расспросили ученого о том, как он пришел к своим открытиям и как достижения науки находят своего потребителя.


— Валентин Николаевич, как бы объяснить неспециалисту, что такое катализ?

— Катализ — это наука о способах управлять направлением и скоростью протекания химических реакций для получения нужных веществ с помощью специальных веществ-катализаторов. Для совсем несведущих я все время повторяю, что слово «катализатор» — это не метафора, как в словосочетании «катализатор прогресса», а химический термин. Он был введен еще в 1836 году шведом Йенсом Якобом Берцелиусом. Для неискушенных в химии людей катализатор — это своеобразная волшебная палочка, прикоснувшись которой к одному веществу его можно превратить в другое. Между тем катализ — одна из самых сложных областей химии, мультидисциплинарная наука, в которой сошлись химия и физика, математика и материаловедение, а также инженерия. Это настолько непросто, что государств, владеющих полным комплексом технологий производства катализаторов, таких, например, как Россия, в мире меньше, чем производителей ядерного оружия, и, повторюсь, катализаторы и каталитические технологии — это важнейший элемент технологического базиса любой развитой экономики. Без продукции, полученной с использованием каталитических процессов, просто не было бы того огромного спектра товаров, которым пользуется современный человек. В химической промышленности 90 процентов продукции получают с применением катализаторов. Всего же доля продукции, полученной с применением таких технологий в различных отраслях (в нефтепереработке, нефтехимии, химической и пищевой промышленности, фармацевтике, энергетике и металлургии), может достигать в ВВП стран 10 процентов. Это совсем не такой маленький показатель, как может показаться на первый взгляд, ведь доля материального производства, например, в ВВП России составляет всего 40 процентов, а в США и вовсе 20 процентов.

magnifier.png Катализ — это настолько непросто, что государств, владеющих полным комплексом технологий производства катализаторов, таких, например, как Россия, в мире меньше, чем производителей ядерного оружия

— Как вы пришли в науку?

— Я за свою жизнь интересовался многими научными дисциплинами. В детстве очень увлекался биологией, был юннатом. Одновременно по нескольку дней в неделю проводил в Минском дворце пионеров в судомодельном кружке. Мое школьное детство и юношество пришлись на конец пятидесятых и шестидесятые годы — это то время, когда делались научные открытия, запускались в космос ракеты, строились большие электростанции и поднималась страна, что предопределяло и мой интерес к технике. Повезло мне, школьнику, и с преподавателями точных наук, так что я всерьез подготовился к поступлению в Московский физико-технический институт.

— Вы рассказывали, что одним из стимулов для поступления в МФТИ стало то, что там собралась сильная команда КВН.

— В те годы в обиход входил телевизор, и все видели, как блистала кавээновская команда МФТИ. Но главным аргументом был, конечно, другой: я хотел стать биофизиком. Я много чем занимался, но больше всего мне нравилась биология. В то время очень привлекательно звучало слово «бионика». А на Физтехе была кафедра биофизики, базировавшаяся на Курчатовском институте. Поступал на Физтех, а хотел попасть именно туда. На втором курсе я вообще даже захотел было уйти в «чистую» биологию, в Московский университет, но я был круглым отличником, и в деканате мне просто не отдали документы. Старшекурсники посоветовали мне не торопиться, а грамотно выбрать научного руководителя и уже по ходу дела разбираться со своими еще незрелыми научными интересами. В 1969 году моим дипломным руководителем стал молодой тогда Кирилл Ильич Замараев (впоследствии академик РАН, выдающийся советский и российский ученый физико-химик, талантливый педагог, подготовивший десятки крупных исследователей, в 1984–1995 годах возглавлял Институт катализа. — «Стимул»). С тех пор и до самой его смерти в 1996 году мы шли по жизни вместе.

— Как вы потом оказались в Институте физической химии?

— Я учился на факультете молекулярной и химической физики, нам давали диплом инженера-физика. Аспирантура у меня формально была при Физтехе. Де-факто же и дипломная практика, и аспирантура проходили в стенах Института химической физики АН СССР. Моим руководителем все это время был Замараев, который работал в ИХФ заведующим лабораторией, а в МФТИ он преподавал параллельно, занимая должность доцента. Наша лаборатория занималась делами, связанными с изучением кинетики химических превращений, новыми физическими методами, там я защищался по открытой тематике, связанной с радиоспектроскопией.

Институт катализа в цифрах

  • Катализаторы и каталитические технологии, созданные при участии академика Валентина Пармона в Институте катализа, используются на сотнях заводах в России и СНГ, на десятках предприятий США, европейских и азиатских стран.

  • Десятки миллионов долларов ежегодно составляет совокупный экономический эффект от их применения.

  • 500 млн рублей вложений в R&D и более 8 млрд рублей продукции: в результате каждый рубль, вложенный государством в разработку новых катализаторов нефтепереработки, дал на 17 рублей продукции — высококачественных бензинов — всего за три года их применения.

  • 200 кг платины — ежегодная экономия за счет применений катализаторов Института катализа для получения азотной кислоты.

  • 500 млн рублей — экономический эффект от использования катализаторов для гидрирования технических и пищевых жиров.

  • 15 тыс. тонн рисовой шелухи в России и 7–8 млн тонн в странах Юго-Восточной Азии — столько отходов ежегодно можно использовать в энергетических целях с помощью катализаторов, разработанных под руководством академика Пармона.

  • 30 млн тонн попутного нефтяного газа за счет каталитической переработки по методу Института катализа можно превратить в жидкие продукты или стандартизированное газовое топливо вместо сжигания или обратной закачки в скважины.

  • В 2–4 раза уменьшается потребление угля на котельных с технологией беспламенного каталитического горения низкосортных топлив, разработанной в Институте катализа.

— А как вы занялись фотокатализом, солнечной энергетикой?

— Я даже и не представлял себе, что буду этим заниматься. Уже на пятом курсе Физтеха я выполнил те работы, за которые мне присвоили в 1975 году кандидатскую степень, и думал, что буду строить научную карьеру в области химической радиоспектроскопии. Сложилось же по-другому. Как вы знаете, в начале семидесятых разразился очень болезненный энергетический кризис, и в Европе начали даже пересаживаться с машин на велосипеды. Любой энергетический кризис всегда стимулирует интерес к возобновляемым источникам энергии. Начали всерьез прикидывать, как жить без нефти. Нобелевский лауреат Николай Николаевич Семенов, директор Института химической физики, в 1972 году опубликовал в журнале «Наука и жизнь» подробную статью «Энергетика будущего». Анализируя общую ситуацию с энергетикой, он пришел к двум мощным заключениям. Отдаленное будущее человечества — это управляемый термоядерный синтез. Тогда его обещали через пятьдесят лет, правда, и сейчас обещают через полвека. Но быстрее, по мысли Семенова, можно научиться использовать энергию Солнца — уже действующего и практически неистощимого природного термоядерного источника энергии.

Сам Семенов — химик, и ему было интересно разработать системы преобразования солнечной энергии, по-своему воспроизводящие функции природного фотосинтеза. Когда мы начинали, было понятно, что задача разрешима: раз в природе фотосинтез работает, значит, его можно воспроизвести. А вот как — не знал никто. Семенов задействовал Замараева еще на этапе подготовки доклада, а потом сделал его своим заместителем по химии (вторым — по физике — был Жорес Алферов) в Совете по изысканию новых путей использования солнечной энергии при Академии наук. Кирилл Ильич был увлечен идеей создания искусственных аналогов фотосинтеза растений и, в свою очередь, привлек к этому делу меня, своего ученика. Так мы приступили к изучению возможности фотокаталитического преобразования солнечной энергии.

— Примерно тогда же другой нобелевский лауреат, Петр Капица, утверждал, что плотность поступающей энергии ограничена физическими свойствами среды, через которую она течет, и что поэтому у альтернативной энергетики нет серьезного будущего.

— Я могу сказать прямо: Капица сильно ошибался. Он не был химиком и поэтому не знал свойств некоторых материалов. У него была статья (публикация 1976 года в «Вестнике АН СССР», основанная на докладе, сделанном на сессии Академии наук годом ранее. — «Стимул») относительно возможности и перспектив разных способов преобразования энергии, где он для обоснования максимального количество энергии, которое можно пропустить через определенную поверхность, использовал так называемый вектор Умова—Пойнтинга применительно к электромагнитной энергии. У Капицы рассуждения правильные, за исключением того, что он не знал, что химики работают с объектами, где на один грамм веса материала могут приходиться сотни квадратных метров площади поверхности. И, вероятно, упустил из виду, что у химиков есть искусство катализа. Если бы он обо всем этом знал, у него были совсем иные выводы.

Моя докторская работа была в стране первой на тему искусственного фотосинтеза. Уже в ходе завершения работ над диссертацией мы с коллегами обнаружили, что для достижения поставленной цели можно идти и не таким сложным путем, как это происходит в природе. Здесь в преобразовании энергии света участвует очень сложная в химическом плане система, которая создавалась и совершенствовалась природой миллиарды лет. Вместо этого было решено использовать сконцентрированный солнечный свет для зажигания реакции с последующим накоплением энергии с применением катализаторов. Первую такую установку мы собрали в середине восьмидесятых годов и испытали ее в Крыму. Даже опытный образец, собранный, что называется, на коленке, показал почти 45-процентную эффективность преобразования солнечной энергии в химическую. Честно говоря, тогда мы и сами такого КПД не ожидали. У наших коллег из более солнечных стран — Израиля, Испании, Австралии и других — догнать нас так и не получилось. После наших работ к нам обратились военные, которые интересовались лазерным оружием и умели делать превосходные концентраторы солнечного света. При взаимодействии с ними мы в моей лаборатории каталитических методов преобразования солнечной энергии разработали и даже изготовили солнечный каталитический реактор очень приличной мощности. Дальше ожидались испытания. Первые — наземные, но и для космоса тоже обсуждали. Хорошая система, которая позволяет аккумулировать небольшие потоки исходной энергии, а потом использовать когда нужно и сколько нужно. Но случился 1991 год, эта работа, как и многие другие, оказалась замороженной.

В прошлом году Валентин Пармон стал лауреатом премии «Глобальная энергия».
В прошлом году Валентин Пармон стал лауреатом премии «Глобальная энергия»     
Фотография предоставлена пресс-службой премии «Глобальная энергия»

— Вы говорите о лаборатории, работающей уже в стенах Института катализа, где исследования по фотокатализу продолжились уже после вашего переезда в Новосибирск?

— Туда я попал в 1977 году в составе достаточно многочисленной команды молодых выпускников Физтеха — специалистов по химической физике, поехав вслед за Замараевым, которого, в свою очередь, пригласил тогдашний директор Института катализа Георгий Константинович Боресков. Академик Боресков — выдающийся химик и, что важно отметить, инженер. Он был одним из пионеров советской каталитической науки и создавал катализаторы и каталитические технологии еще в начале тридцатых годов, а после создания Сибирского научного центра стал инициатором создания в Новосибирске Института катализа. Кстати, наш институт — результат партийного решения. В 1958 году, после расширенного майского пленума ЦК КПСС, главным лейтмотивом которого стало развитие индустрии полимеров, в Советском Союзе началось бурное развитие химической промышленности. Было создано 17 отраслевых и три академических института, построено много заводов. Наш институт стал первым в мире научным центром катализа, основной задачей которого помимо научной составляющей было налаживание взаимодействия с промышленностью. Из-за этого наш институт не хотели даже брать в Академию наук.

— Слишком прикладной?

— Считали, что слишком. Да, Институту катализа всегда был свойственен определенный дуализм: это и академический институт, где проводились фундаментальные исследования, и одновременно место, в котором сразу же занялись разработкой самих катализаторов и каталитическими технологиями, внедряемыми в промышленность. При создании института сразу был организован опытно-химический цех, где можно было получать и испытывать в работе небольшие партии наших катализаторов. Это внушало нашим заказчикам из промышленности намного больше доверия, чем какая-то чисто лабораторная разработка, выполненная «в пробирке». Так что у нас в институте никогда не было жесткого разделения на научные исследования и производство. Все это шло рука об руку, в симбиозе: генерируя новые знания, мы их сразу могли применить для отработки модельных катализаторов, тут же вникая в запросы производственников. Естественно, это значительно сокращало путь от идеи до внедрения. То есть с точки зрения академической фундаментальной составляющей мы занимаемся изучением каталитических явлений, в том числе фотокатализа и катализа в природе, работаем над созданием единой теории катализа, предвидением каталитического действия. А со стороны прикладных исследований — разрабатываем сами катализаторы и каталитические процессы для различных отраслевых технологий. Если говорить об энергетике, то такие катализаторы и технологии нужны в нефтепереработке, нефтехимии, а также для преобразования и аккумулирования различных видов энергии. А сейчас и для эффективного использования возобновляемых и нетрадиционных энергоресурсов.

— Ваш институт в девяностые годы на зависть многим другим академическим организациям смог неплохо встроиться в новые коммерческие условия существования.

— В Новосибирске не бедствовали и Институт ядерной физики, и целый ряд других прочных академических институтов. Что касается нас, повторюсь: катализ как научная дисциплина всегда находится на стыке фундаментальной науки и прикладных задач, и промышленность напрямую заинтересована в результатах нашей деятельности. Поэтому в новосибирском Институте катализа с советских времен много занимались именно прикладными исследованиями, выполнялось много работ для отечественной промышленности и энергетики. Так что к моменту распада Советского Союза коллектив института был уже вполне подготовлен к работе в рыночных условиях. К тому же мы были обладателями накопленного в предыдущие годы сильного фундаментального и междисциплинарного научно-технологического задела.

magnifier.png У Капицы рассуждения правильные, за исключением того, что он не знал, что химики работают с объектами, где на один грамм веса материала могут приходиться сотни квадратных метров площади поверхности

Нам удалось переналадить работу института в новых условиях, превратив его в исследовательский центр, скажем так, еще более нацеленный на запросы промышленных потребителей. Умение работать в конкурентной среде оказалось не менее интересным, чем занятия исключительно фундаментальной наукой. Конечно, в наших разработках продолжали нуждаться (и нуждаются) такие небедные отечественные отрасли, как нефтепереработка и нефтехимия. Наш институт одним из первых среди академических начал заключать международные контракты и лицензионные соглашения, и в эти в целом тяжелые для российской промышленности времена основными потребителями инновационных разработок института катализа были зарубежные компании. В девяностые годы более половины нашего бюджета составляли деньги, приходившие из-за границы. Благодаря валютным поступлениям мы неплохо развивались. Мы везде приводим такие цифры: по финансовым итогам 1999 года за счет роялти и контактов с зарубежными фирмами мы получили (в твердой валюте) 70 процентов общего бюджета института, а от государства — только 17 процентов, причем отдали государству в виде налогов 22 процента от нашего бюджета, то есть больше, чем получили.

— Чем вы объясняете коммерческий успех института за рубежом?

— Академик Кирилл Ильич Замараев, директор нашего института в те годы, имел самые широкие научные связи за рубежом, и во многом мы сумели их капитализировать. К тому же надо понимать, что научные организации нашего профиля в мире были созданы позже новосибирской, и к девяностым годам в некоторых областях они нас не догнали — ни по кадровому потенциалу, ни по некоторым продуктам и технологиям. Надо понимать, что исследования в области катализа очень дороги, и даже крупным химическим корпорациям чрезвычайно накладно финансировать весь цикл работ от фундаментального исследования до инженерной разработки. Поэтому в своей инновационной практике они зачастую выуживают в профильных лабораториях университетов во всем мире промежуточные результаты, а потом уже сами «доводят» их до промышленного применения. А в Новосибирске полный исследовательский цикл в одном институте уже существовал, причем с широким спектром продуктов в высокой для реализации степени готовности, в разработку которых в свое время уже были вложены огромные деньги. В результате взаимодействия с нами химические компании в ряде европейских стран, в частности, освоили выпуск и широкое использование для производства полиэтилена и специальных марок полипропилена более эффективных, чем у них были до того, катализаторов по разработкам нашего института. Одну из технологий мы передали голландской компании DSM, производили ее и использовали и в Америке, и в Европе. Поэтому практически весь полипропилен еще в первом десятилетии двадцать первого века в Западной Европе производили на наших катализаторах. Затем, правда, наши голландские партнеры перешли на новую технологию, и надо было менять катализатор. А производство полимеров компания DSM продала компании Sabic из Саудовской Аравии. Арабам стали принадлежать заводы в Европе, и уже Sabic недавно поставила на производство новую версию разработанного нами катализатора. Американская компания Monsanto Enviro-Chem до сих пор производит установки для очистки промышленных газовых выбросов от органических загрязнений с помощью нашей технологии реверс-процесс. В Польше успешно функционирует завод по производству высокооктанового бензина по разработанной нами технологии цеоформинг. Есть и другие примеры.

magnifier.png Миллиардные доходы получают предприятия, где внедрены наши катализаторы и каталитические технологии для производства бензина стандартов «Евро-4» и «Евро-5»

— Валентин Николаевич, какие разработки, сделанные в вашем институте, вы бы назвали самыми интересными?

— Вы знаете, после довольно долгого перерыва многие наши наработки все чаще востребуются в самой России, а некоторые из них уже сейчас приносят значительный экономический эффект. Например, миллиардные доходы получают предприятия, где внедрены наши катализаторы и каталитические технологии для производства бензина стандартов «Евро-4» и «Евро-5». В начале десятых годов государство вложило в исследования и разработки нашего института полмиллиарда рублей, но только за три года применения их результатов было выпущено высококачественного и высоколиквидного топлива более чем на восемь миллиардов. Сейчас мы на стадии запуска каталитических технологий переработки попутных нефтяных газов в жидкие продукты или в газовое топливо, пригодное для местной энергетики. Это чрезвычайно важно, ведь сейчас до 30 миллионов тонн такого газа сжигается или закачивается обратно в скважину исключительно потому, что без такой переработки его сложно транспортировать. Построено несколько котельных, работающих по созданной нами технологии беспламенного каталитического горения с использованием низкосортного угля. Режим работы таких котельных позволяет, в отличие от стандартных, чрезвычайно гибко в десятикратном диапазоне менять мощности и выработки тепла, подстраиваясь, например, под погодные условия и снабжая дома комфортным теплом без перетопов. Одновременно ликвидированы выбросы токсичных веществ в дымовых газах; котельные не дымят вообще. При этом расходы самого топлива сокращаются по меньшей мере в два раза. После несущественной регулировки в них можно использовать различные типы биотоплива — опилки, шелуху, отходы пищевой промышленности или водоочистных сооружений. Что касается непосредственно самих биотоплив, они в области возобновляемых источников энергии. Мы сейчас много работаем в этой области. В частности, создаем перспективные каталитические технологии для производства высококачественных моторных топлив, включая авиационные, с использованием биомассы растений или тех же отходов, миллионы и миллионы тонн которых образуются и накапливается в результате деятельности человека.

Темы:

Еще по теме:
11.10.2019
Об особенностях российской культуры и истории в отношении техпредпринимательства, об отсутствии целостной инновационной ...
23.09.2019
Профессор Центра добычи углеводородов Сколковского института науки и технологий Дмитрий Коротеев — о перспективах примен...
26.08.2019
Как создать цепочку полного инновационного цикла — от научных идей до востребованной на рынке инновационной продукции? О...
20.08.2019
У генерального директора компании «Миландр» Михаила Павлюка свой взгляд на то, как развивать электронику в России
Наверх